Muséum national d’Histoire naturelle de Paris

Paris, Île-de-France, FR

Families Collected

115

Genera Collected

269

Species Collected

269

Occurrences Recorded

647

Countries

3

Photos Taken

0

Occurrence Locations

Occurrences (647)

Loading table...

Occurrence Timeline

Affiliated People (5)

Publications (26)

Phylogenomics and the rise of the angiosperms

Nature
2024

Vol. 629, Issue 8013

pp. 843-850

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.

DOI:

10.1038/s41586-024-07324-0

View Publication

Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication

Frontiers in Plant Science
2023

Vol. 14

Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order’s spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.

DOI:

10.3389/fpls.2023.1063174

View Publication

An updated infra‐familial classification of Sapindaceae based on targeted enrichment data

American Journal of Botany
2021

Vol. 108, Issue 7

pp. 1234-1251

Premise

The economically important, cosmopolitan soapberry family (Sapindaceae) comprises ca. 1900 species in 144 genera. Since the seminal work of Radlkofer, several authors have attempted to overcome challenges presented by the family’s complex infra‐familial classification. With the advent of molecular systematics, revisions of the various proposed groupings have provided significant momentum, but we still lack a formal classification system rooted in an evolutionary framework.

Methods

Nuclear DNA sequence data were generated for 123 genera (86%) of Sapindaceae using target sequence capture with the Angiosperms353 universal probe set. HybPiper was used to produce aligned DNA matrices. Phylogenetic inferences were obtained using coalescence‐based and concatenated methods. The clades recovered are discussed in light of both benchmark studies to identify synapomorphies and distributional evidence to underpin an updated infra‐familial classification.

Key Results

Coalescence‐based and concatenated phylogenetic trees had identical topologies and node support, except for the placement of Melicoccus bijugatus Jacq. Twenty‐one clades were recovered, which serve as the basis for a revised infra‐familial classification.

Conclusions

Twenty tribes are recognized in four subfamilies: two tribes in Hippocastanoideae, two in Dodonaeoideae, and 16 in Sapindoideae (no tribes are recognized in the monotypic subfamily Xanthoceratoideae). Within Sapindoideae, six new tribes are described: Blomieae Buerki & Callm.; Guindilieae Buerki, Callm. & Acev.‐Rodr.; Haplocoeleae Buerki & Callm.; Stadmanieae Buerki & Callm.; Tristiropsideae Buerki & Callm.; and Ungnadieae Buerki & Callm. This updated classification provides a backbone for further research and conservation efforts on this family.

DOI:

10.1002/ajb2.1693

View Publication

A new micro-endemic species of Alectryon (Sapindaceae) from Koghis forest, New Caledonia

Systematic Botany
2020

Vol. 45, Issue 1

pp. 156-162

The new species Alectryon hirsutus is described from New Caledonia. It is distinguished from the only other member of the genus occurring on this southwest Pacific island, A. carinatus, by its uniformly densely hirsute indumentum (vs. glabrous or with short, appressed trichomes) as well as features of its leaves [(2‐)3‐5 pairs of leaflets vs. 1‐2]) and fruits (9‐16 × 16‐28 mm vs. 5.6‐13 × 5.7‐10.6 mm), along with its presence in dense humid forest (vs. sclerophyllous or owland dry forest). A preliminary conservation status of Critically Endangered [CR] is suggested following IUCN Red List Categories and Criteria.

DOI:

10.1600/036364420x15801369352414

View Publication

Two new genera of Sapindaceae (Cupanieae) from the southern Pacific: Lepidocupania and Neoarytera

Candollea
2020

Vol. 75, Issue 2

Phylogenetic analyses of the family Sapindaceae inferred from nuclear and plastid sequence data have revealed a high level of para- and polyphyly at the subfamilial, tribal, and generic levels. A phylogenetic study focusing on taxa in the southern Pacific belonging to tribe Cupanieae has shown that the two most species-rich genera, Arytera Blume and Cupaniopsis Radlk., are polyphyletic. This study aims to clarify generic limits among the taxa currently placed in these two genera by identifying morphological features that support monophyletic groups suitable for recognition at the generic level. Specimens deposited in major herbaria holding material of these taxa were examined to complement extensive field observations. Careful consideration of morphological features in light of previous taxonomic treatments and the results of phylogenetic analyses enabled us to propose a re-aligned generic framework for Cupanieae in which two new genera are described to accommodate species previously placed in Arytera and Cupaniopsis: viz., Lepidocupania Buerki, Callm., Munzinger & Lowry (21 species) and Neoarytera Callm., Buerki, Munzinger & Lowry (4 species). A total of 25 new combinations are made, lectotypes are designated for nine names (two first step and seven second-step), and one new synonym is established. A key to the newly circumscribed genera Arytera and Cupaniopsis, along with allied genera, is provided, accompanied by information on the distribution and ecology of each species.

DOI:

10.15553/c2020v752a9

View Publication

Alectryon vitiensis: A new species of Sapindaceae endemic to Fiji

Novon: A Journal for Botanical Nomenclature
2017

Vol. 25, Issue 4

pp. 421-429

A new species of Alectryon Gaertn. (Sapindaceae) endemic to the Fijian archipelago is described as A. vitiensis Buerki, Lowry, Munzinger & Callm. based on morphological and molecular evidence. It can easily be distinguished from the two congeners currently known from Fiji by its smaller leaves, subsessile leaflets, apetalous flowers, and crested fruits. A phylogenetic analysis using ITS sequence data shows that the new species is closely related to two Australian endemics, A. diversifolius (F. Muell.) S. T. Reynolds and A. oleifolius (Desf.) S. T. Reynolds, but differs in having compound leaves covered with a golden indument. Moreover, the Australian taxa are associated with dry habitats, whereas the new species from Fiji is confined to evergreen humid forests. Among apetalous species (all of which belong to a well-supported clade), A. vitiensis morphologically most closely resembles the generic type, A. excelsus Gaertn., endemic to New Zealand, but they differ from one another in the type of indument covering their branches and leaves and the arrangement, shape, and nature of the indument on their leaflets; and they belong to different clades. The new species is provisionally assigned a conservation status of “Endangered” according to the IUCN Red List criteria.

DOI:

10.3417/d-16-00006

View Publication

Biogeography and evolution of the screw-pine genus Benstonea Callm. & Buerki (Pandanaceae)

Candollea
2016

Vol. 71, Issue 2

pp. 217-229

Abstract

This study investigates the biogeography, evolution and systematics of Benstonea Callm. & Buerki (Pandanaceae) based on six plastid DNA regions and 54 specimens representing 36 species (60% of species generic diversity). Our maximum likelihood and Bayesian phylogenetic inferences support the monophyly of Benstonea and its close relationship with the speciose Pandanus Parkinson. Benstonea is subdivided into three clades exhibiting contrasting species diversities. Clades I and II have seven species each, whereas most of the species diversity occurs in clade III with 21 species. None of the sections defined by Stone in Pandanus subgenus Acrostigma (Kurz) B.C. Stone (now Benstonea) are retrieved monophyletic by our analyses. Biogeographical inference supports the origin of Benstonea on the Sunda shelf during the Miocene and shows several subsequent exchanges between Peninsular Malaysia and Borneo. Species in Indochina and the Indian continent originated in Peninsular Malaysia and all belong to clade I. Wallacea was colonized at least twice from Borneo sometimes during the Miocene and no back-dispersals were inferred. The Sunda shelf was colonized once, most likely from Halmahera. Finally, our analyses suggest that the Fijian endemic Benstonea thurstonii (C.H. Wright) Callm. & Buerki dispersed from either Australia or New Guinea during the Pleistocene.

DOI:

10.15553/c2016v712a8

View Publication

Generic delimitations, biogeography and evolution in the tribe Coleeae (Bignoniaceae), endemic to Madagascar and the smaller islands of the western Indian Ocean

Molecular Phylogenetics and Evolution
2016

Vol. 96

pp. 178-186

This study presents the most complete generic phylogenetic framework to date for the tribe Coleeae (Bignoniaceae), which is endemic to Madagascar and the other smaller islands in the western part of the Indian Ocean. The study is based on plastid and nuclear DNA regions and includes 47 species representing the five currently recognized genera (including all the species occurring in the western Indian Ocean region). Bayesian and maximum likelihood analyses supported (i) the monophyly of the tribe, (ii) the monophyly of Phylloctenium, Phyllarthron and Rhodocolea and (iii) the paraphyly of Colea due to the inclusion of species of Ophiocolea. The latter genus was also recovered paraphyletic due to the inclusion of two species of Colea (C. decora and C. labatii). The taxonomic implications of the mutual paraphyly of these two genera are discussed in light of morphological evidence, and it is concluded that the two genera should be merged, and the necessary new nomenclatural combinations are provided. The phylogenetic framework shows Phylloctenium, which is endemic to Madagascar and restricted to dry ecosystems, as basal and sister to the rest of the tribe, suggesting Madagascar to be the centre of origin of this clade. The remaining genera are diversified mostly in humid ecosystems, with evidence of multiple dispersals to the neighboring islands, including at least two to the Comoros, one to Mauritius and one to the Seychelles. Finally, we hypothesize that the ecological success of this tribe might have been triggered by a shift of fruit-dispersal mode from wind to lemur.

DOI:

10.1016/j.ympev.2015.11.016

View Publication

A taxonomic revision of the endemic New Caledonian genus Storthocalyx (Sapindaceae)

Systematic Botany
2016

Vol. 41, Issue 2

pp. 387-400

The endemic New Caledonian genus Storthocalyx is only known from two of this South West Pacific archipelago's main vegetation types, maquis and humid evergreen forest, and within the latter it occurs on both ultramafic and volcano-sedimentary substrates. Recent phylogenetic studies confirm its monophyly and indicate that it forms a clade with two other endemic genera, Gongrodiscus and Podonephelium. Storthocalyx is characterized by leaflets with a glaucous lower surface (due to the presence of papillae) and a lack of domatia, actinomorphic flowers, distinct sepals, petals with many long trichomes and lacking appendages, and a three-locular capsule whose inner surface is covered with a dense indument. As part of a collaborative effort to clarify the taxonomy of New Caledonian Sapindaceae, a revision of Storthocalyx is presented. Species delimitation is based on results from a recently published multivariate morphometric analysis, and descriptions were prepared using the resulting data matrix coupled with examination of all available herbarium collections and extensive field observations. Five species are recognized, including one that is newly described (Storthocalyx corymbosus). A key to species is provided, along with descriptions, distribution maps, color photos, a line drawing (for the new species), and risk of extinction assessments following IUCN red list categories and criteria.

DOI:

10.1600/036364416x691902

View Publication

The genus Pandanus Parkinson (Pandanaceae) on Halmahera island (Moluccas, Indonesia) with descriptions of three new species and a key to the species on the island

Candollea
2015

Vol. 70, Issue 2

pp. 179

Halmahera is the largest (c. 18,000 km2) island of the Moluccan archipelago, but naturalists have only sporadically visited Halmahera and it has remained very poorly explored botanically. However, an intensive botanical inventory project was undertaken between 2012 and 2014 in part of the island to inform flora biodiversity management for certain proposed mining activities. This effort has contributed over 3600 plant collections and nearly doubled the number of Pandanus Parkinson (Pandanaceae) specimens (bringing the total to 55) available for Halmahera. After careful examination of all available material and comparison with other material from the region, we are able to present the first overview of the genus for the island. We have identified ten species from the island of which three are new to science and not known elsewhere, while the other seven are all representatives of species already described from other localities. The new species are formally described here as Pandanus beguinii Callm. & A. P. Keim, Pandanus benstoneoides Callm., Buerki & Phillipson and Pandanus halmaherensis Callm. & A. P. Keim. The new species are provided with notes on their respective morphology and known distributional and ecological ranges, line drawings. Those three new species are assigned a preliminary status of Endangered following IUCN Red List Categories and Criteria. All ten species are illustrated with colour photographs and a key to the species is provided.

DOI:

10.15553/c2015v702a2

View Publication

Incorporating evolutionary history into conservation planning in biodiversity hotspots

Philosophical Transactions of the Royal Society B: Biological Sciences
2015

Vol. 370, Issue 1662

pp. 20140014

There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar.

DOI:

10.1098/rstb.2014.0014

View Publication

Novitates Neocaledonicae. II. Acropogon moratianus Callm., Munzinger & Lowry, sp. nov. (Malvaceae, Sterculieae): a rare and threatened new species from New Caledonia

Adansonia
2015

Vol. 37, Issue 1

pp. 131-137

Abstract

A new species of Acropogon Schltr. (Malvaceae, Sterculieae) is described from New Caledonia. Acropogon moratianus Callm., Munzinger & Lowry, sp. nov. is endemic to three ultramafic massifs, Boulinda, Kopéto and Paéoua, along the north-western coast of Grande Terre. This rare, endangered species differs from other members of the genus by its large 5-lobed leaves whose abaxial surface is covered by erect to divergent stellate trichomes and the subspherical shape of its follicles, which bear a pointed apex. Line drawings and color photos are provided, along with a discussion of its morphological affinities and a preliminary risk of extinction assessment.

DOI:

10.5252/a2015n1a8

View Publication

Notes on Benstonea (Pandanaceae) from the islands of Halmahera, New Guinea and Sulawesi

Phytotaxa
2014

Vol. 175, Issue 3

pp. 161

Benstonea (Pandanaceae) was circumscribed to include 57 species formerly placed in the genus Pandanus. Field observations, accompanied by the study of available herbarium material have brought new insights for the delimitation of certain problematic species, especially in the difficult group of species characterized by an axillary infructescence on a short peduncle covered by prophylls and the abscission of the basal portion of the drupe at maturity. New combinations, based on names in Pandanus previously treated as synonyms of Benstonea stenocarpa, are proposed for three distinct species of this group from Halmahera (Indonesia) and Papua New Guinea. The identity of Benstonea celebica, endemic to Sulawesi (Indonesia), is also elucidated and an epitype is designated for this species.

DOI:

10.11646/phytotaxa.175.3.6

View Publication

Spatio-temporal history of the endemic genera of Madagascar

Botanical Journal of the Linnean Society
2013

Vol. 171, Issue 2

pp. 304-329

Madagascar is renowned for its unparalleled species richness and levels of endemism, which have led, in combination with species extinction caused by an unprecedented rate of anthropogenic deforestation, to its designation as one of the most important biodiversity hotspots. It is home to 10 650 species (84% endemic) of angiosperms in 1621 genera (19% endemic). During the last two centuries, botanists have focused their efforts on the provision of a taxonomic framework for the flora of the island, but much remains to be investigated regarding the evolutionary processes that have shaped Madagascan botanical diversity. In this article, we review the current state of phylogenetic and biogeographical knowledge of the endemic angiosperm genera. We also propose a new stratified biogeographical model, based on palaeogeographical evidence, allowing the inference of the spatio-temporal history of Madagascan taxa. The implications of past climate change and extinction events on the evolutionary history of the endemic genera are also discussed in depth. Phylogenetic information was available for 184 of the 310 endemic genera (59.3%) and divergence time estimates were available for 67 (21.6%). Based on this evidence, we show the importance of phylogenetic clustering in the assemblage of the current Madagascan diversity (26% of the genera have a sister lineage from Madagascar) and confirm the strong floristic affinities with Africa, South-East Asia and India (22%, 9.1% and 6.2% of the genera, respectively). The close links with the Comoros, Mascarenes and Seychelles are also discussed. These results also support an Eocene/Oligocene onset for the origin of the Madagascan generic endemic flora, with the majority arising in the Miocene or more recently. These results therefore de-emphasize the importance of the Gondwanan break-up on the evolution of the flora. There is, however, some fossil evidence suggesting that recent extinctions (e.g. Sarcolaenaceae, a current Madagascan endemic, in southern Africa) might blur vicariance patterns and favour dispersal explanations for current biodiversity patterns.

DOI:

10.1111/boj.12008

View Publication

A taxonomic revision of the endemic New Caledonian genus Podonephelium Baill. (Sapindaceae)

Systematic Botany
2013

Vol. 38, Issue 4

pp. 1105-1124

The endemic New Caledonian genus Podonephelium Baill. has representatives in all of the archipelago's main vegetation types (maquis, dry forest, and humid evergreen forest) and occurs on each of its principal substrates (calcareous, ultramafic and volcano-sedimentary). Recent phylogenetic studies confirm its monophyly and indicate that it forms a clade with two other endemic genera, Gongrodiscus and Storthocalyx. Podonephelium is characterized by juvenile leaves that form a whip-like structure and fruit that dehisce longitudinally into two halves that contain a round black seed nearly entirely covered by a red arillode. As part of a collaborative effort to clarify the taxonomy of New Caledonian Sapindaceae, a revision of Podonephelium is presented based on examination of all available collections coupled with extensive field studies. Nine species are recognized, four of which are newly described ( P. cristagalli , P. davidsonii, P. pachycaule, and P. plicatum) and one infraspecific taxon is elevated to the rank of species (P. gongrocarpum). A key to species is provided, along with descriptions, distribution maps, line drawings (for the new species and new combination), and risk of extinction assessments using the International Union for Conservation of Nature IUCN red list criteria.

DOI:

10.1600/036364413x674814

View Publication

Phylogenetic inference of New Caledonian lineages of Sapindaceae: Molecular evidence requires a reassessment of generic circumscriptions

TAXON
2012

Vol. 61, Issue 1

pp. 109-119

Sapindaceae (Sapindales) are a conspicuous and diversified element of the New Caledonian flora, with ca. 67 species (ca. 90 % endemic) in 13 genera (four endemic: Gongrodiscus, Loxodiscus, Podonephelium, Storthocalyx). The phylogeny of New Caledonian Sapindaceae is inferred by adding 97 new samples, encompassing the full distributional and morphological range of the archipelago's genera, to a broad plastid and nuclear DNA sequence dataset that is representative of the family worldwide. Results from phylogenetic analyses indicate that members of the family on New Caledonia belong to two major clades, the Dodonaea group (placed within subfamily Dodonaeoideae) and the Cupania group (subfamily Sapindoideae), which exhibit strikingly different species diversities (ca. 89% of the species on New Caledonia belong to the Cupania group). Results support the monophyly of all four endemic genera and most of those that also occur elsewhere, with the exception of the morphologically similar Austro‐Pacific genera Arytera and Cupaniopsis, both of which have representatives in each of two well‐supported subclades within the Cupania group, suggesting at least two dispersals to New Caledonia (most likely from Australia). The results provide a robust phylogenetic framework for ongoing taxonomic revisions of Sapindaceae genera on New Caledonia and for investigating the spatio‐temporal history of the family in this biogeographically intriguing archipelago, although expanded sampling (including from other areas) and further analyses will be required to resolve generic limits among the taxa currently placed in Arytera and Cupaniopsis.

DOI:

10.1002/tax.611008

View Publication

Benstonea Callm. & Buerki (Pandanaceae): Characterization, Circumscription, and Distribution of a New Genus of Screw-Pines, with a Synopsis of Accepted Species

Candollea
2012

Vol. 67, Issue 2

pp. 323

Abstract

Pandanaceae, a palaeotropical monocot family of c. 700 species, comprises four currently recognized genera: Freycinetia Gaudich., Martellidendron (Pic. Serm.) Callm. & Chassot, Pandanus Parkinson and Sararanga Helms. Within Pandanus (c. 500 spp.), species of sect. Acrostigma Kurz [one of four sections comprising subg. Acrostigma (Kurz) B. C. Stone] possess highly distinctive morphological features (viz. sharp spiniform, linear styles with the stigmatic groove on the abaxial side of the style and a staminate flower reduced to 1 to 3 stamens) shared with two other species (likewise belonging to subg. Acrostigma but originally placed in sect. Fusiforma B. C. Stone) that separate them from all other congeners. Based on morphology, biogeography, and recent inferences from plastid DNA sequence data, we place these distinctive species in a new genus, Benstonea Callm. & Buerki, making the necessary new combinations for the 50 recognized species, accompanied by six lectotypifications, one epitytification and two neotypifications, and placing seventeen names in synonymy. A generic key is provided to facilitate distinguishing Benstonea from the four other genera of Pandanaceae. Comments are provided on the distribution, ecology and typification of each accepted species.

DOI:

10.15553/c2012v672a12

View Publication

Straightening out the screw­pines: A first step in understanding phylogenetic relationships within Pandanaceae

TAXON
2012

Vol. 61, Issue 5

pp. 1010-1020

Abstract

The Paleotropical monocot family Pandanaceae includes ca. 700 species assigned to four genera: Pandanus (ca. 500 spp.), Freycinetia (ca. 200 spp.), Martellidendron (6 spp.) and Sararanga (2 spp.). The most speciose genus, Pandanus, was classically subdivided into eight subgenera. Previous cladistic analyses revealed that several key morphological characters might have evolved independently several times, thus highlighting the need for a robust molecular phylogenetic framework to elucidate phylogenetic relationships and infrafamilial and infrageneric classification within this group. In this study, three plastid DNA regions (matK, trnQ­rps16, trnL­trnF) and 200 individuals (representing 134 species and 609 newly produced sequences)—spanning the taxonomic and biogeographic diversity of the family—are analyzed to test the monophyly at the familial and generic levels, and to infer phylogenetic relationships within the family. Particular emphasis is devoted to Pandanus with the aim of recognizing key morphological characters that reflect the evolutionary history of the genus. Phylogenetic inferences support the monophyly of Pandanaceae and establish Sararanga as sister to the rest of the family, with Freycinetia as sister to the Pandanus­Martellidendron pair. Although relationships are not well­resolved within the latter clade, three supported lineages are retrieved: (1) the Acrostigma clade comprising taxa of P. subg. Acrostigma, (2) the Martellidendron clade including taxa assigned to the genus Martellidendron and (3) the core Pandanus clade including taxa of all other subgenera of Pandanus. Morphological and biogeographic evidence supporting clade definitions are discussed in detail. This study provides the first phylogenetic backbone for Pandanaceae, which is sufficiently robust to serve as a springboard for future research into the evolutionary history of this neglected family.

DOI:

10.1002/tax.615008

View Publication

How to kill two genera with one tree: clarifying generic circumscriptions in an endemic Malagasy clade of Sapindaceae

Botanical Journal of the Linnean Society
2011

Vol. 165, Issue 3

pp. 223-234

Phylogenetic relationships in a Malagasy clade of Sapindaceae, encompassing Molinaea (with members also in the Mascarene Islands), Neotina, Tina and Tinopsis, were inferred by expanding a previous nuclear and plastid DNA data set for the family. The circumscription of these morphologically similar genera has remained problematic since the first family-wide treatment. To investigate this situation, representative taxa were analysed to: (1) test the monophyly of the genera; (2) investigate their phylogenetic relationships; and (3) explore alternative circumscriptions that reflect phylogeny and yield genera that are morphologically coherent and easily characterized. Phylogenetic inferences supported the monophyly of the group and its subdivision into three clades. All species of Molinaea sampled belong to a clade (Clade I) that is sister to a clade comprising Neotina, Tina and Tinopsis, within which one clade (Clade II) encompasses Tinopsis and Neotina (with the latter nested within the former) and another (Clade III) comprises all taxa of Tina. These three genera can be easily distinguished from Molinaea by having two rather than three carpels, which represents an unambiguous synapomorphy. Given the paraphyly of Tinopsis with regard to Neotina and the strong support for the monophyly of Tina, two potentially viable options are available for the generic delimitation of the taxa in this clade: (1) to recognize two genera corresponding, respectively, to Clades II and III; or (2) to place all of the taxa in a single genus encompassing both clades. Based on a review of morphological evidence the second option is favoured and consequently a broad generic concept is applied.

DOI:

10.1111/j.1095-8339.2010.01106.x

View Publication

Gouania tiliifolia: The Correct name for Gouania scandens

Novon: A Journal for Botanical Nomenclature
2011

Vol. 21, Issue 4

pp. 481-482

In a recent revision of Gouania Jacq. (Rhamnaceae) for Madagascar and other western Indian Ocean islands, confusion about the correct date of publication of Lamarck's Encyclopédie Méthodique caused the authors to overlook the nomenclatural priority of G. tiliifolia Lam. over the heterotypic synonym G. scandens (Gaertn.) R. B. Drumm. The error is corrected, and the new combination G. tiliifolia subsp. glandulosa (Boivin ex Tul.) Buerki, Phillipson & Callm. is provided for its non-typical subspecies.

DOI:

10.3417/2011078

View Publication

A taxonomic revision of Gouania (Rhamnaceae) in Madagascar and the other islands of the Western Indian Ocean (the Comoro and Mascarene Islands, and the Seychelles)

Annals of the Missouri Botanical Garden
2011

Vol. 98, Issue 2

pp. 157-195

A taxonomic revision of the genus Gouania Jacq. (Rhamnaceae) is presented for Madagascar and the other western Indian Ocean islands. Seventeen species are recognized, of which nine are described and published as new (all endemic to Madagascar): G. ambrensis Buerki, Phillipson & Callm., G. callmanderi Buerki, G. cupreifolia Buerki, Phillipson & Callm., G. cupuliflora Buerki, Phillipson & Callm., G. gautieri Buerki, Phillipson & Callm., G. perrieri Buerki, Phillipson & Callm., G. phillipsonii Buerki, G. taolagnarensis Buerki, Phillipson & Callm., and G. zebrifolia Buerki, Phillipson & Callm. Sixteen species occur in Madagascar, of which 13 are endemic and three are common to Madagascar and one or more of the smaller Indian Ocean islands. The latter include G. laxiflora Tul., a species which is also present on mainland Africa. One species, G. mauritiana Lam., is endemic to Réunion Island. We recognize two subspecies within G. scandens (Gaertn.) R. B. Drumm.: G. scandens subsp. scandens and G. scandens subsp. glandulosa (Boivin ex Tul.) Buerki, Phillipson & Callm., the latter transferred from G. glandulosa Boivin ex Tul. Past confusion about the identity of this species is discussed. Five names are lectotypified: G. aphrodes Tul., G. glandulosa [= G. scandens subsp. glandulosa], G. laxiflora, G. lineata Tul., and G. tiliifolia Lam. Both lectotype and epitype are designated for G. mauritiana. Conservation assessments are provided for all species within their primary areas of occurrence.

DOI:

10.3417/2007075

View Publication

Molecular phylogenetic and morphological evidence supports recognition of Gereaua, a new endemic genus of sapindaceae from Madagascar

Systematic Botany
2010

Vol. 35, Issue 1

pp. 172-180

A recent worldwide phylogeny of Sapindaceae inferred from nuclear and plastid DNA regions segregated the Malagasy Haplocoelum perrieri Capuron from the African Haplocoelum foliosum (Hiern) Bullock. Additional phylogenetic analyses conducted here (including material of Haplocoelum inopleum Radlk., the generic type) supported the result from the previous analysis and showed that maintaining a broad circumscription of Haplocoelum to include the Malagasy species would render the genus polyphyletic. To maintain monophyly, it is necessary to exclude H. perrieri, which we transfer to a new, monotypic genus, described here as Gereaua. This taxon is easily distinguished from the species retained in Haplocoelum by the following morphological characters: (1) sexually dimorphic inflorescences in racemules (vs. monomorphic inflorescences in fascicule of cymes); (2) 2-locular ovary (vs. 3-locular ovary); (3) rudimentary pistillode in staminate flowers (vs. no pistillode in staminate flowers); (4) corolla with 4 or 5 petals (vs. apetalous); (5) pubescent fruit (vs. glabrous fruit). Relationships between the new genus and its most closely related genera, included in the Macphersonia group, are discussed in light of molecular, morphological and biogeographic evidence. A preliminary threat assessment of Gereaua perrieri using the IUCN Red List criteria indicates a status of Least Concern.

DOI:

10.1600/036364410790862669

View Publication

Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae

Plant Ecology and Evolution
2010

Vol. 143, Issue 2

pp. 148-159

Background and aims – Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly ¾ of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods – Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz. a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results – Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion – To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.

DOI:

10.5091/plecevo.2010.437

View Publication

A synoptic revision of the genus Lepisanthes Blume (Sapindaceae) in Madagascar

Adansonia
2009

Vol. 31, Issue 2

pp. 301-309

A taxonomic revision of the genus Lepisanthes Blume in Madagascar is presented. Three species are recognized based on an analysis of morphological characters in combination with eco-geographic parameters. Two infraspecific taxa recognized previously in Aphania senegalensis (Juss. ex Poir.) Radlk. (= Lepisanthes senegalensis (Juss. ex Poir.) Leenh.) are raised to the species level, viz. L. chrysotricha (Capuron) Buerki, Callm. & Lowry and L. perrieri (Capuron) Buerki, Callm. & Lowry. A third species from northwestern Madagascar is described as new, L. sambiranensis Buerki, Callm. & Lowry. An identification key to the Malagasy species of Lepisanthes is presented as well as preliminary assessments of the conservation status for each species.

DOI:

10.5252/a2009n2a6

View Publication
Muséum national d’Histoire naturelle de Paris | Flora of the World