Caroline M. Pannell

Publications (Showing 3 of 3)

Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication

Frontiers in Plant Science
2023

Vol. 14

Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order’s spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.

DOI:

10.3389/fpls.2023.1063174

View Publication

Flora of Singapore: Checklist and bibliography

Gardens' Bulletin Singapore
2022

Vol. 74, Issue (suppl.1)

pp. 3-860

A checklist of all species of bryophytes, lycophytes, ferns, gymnosperms and angiosperms that are found in the wild (native, naturalised and casual) in Singapore is presented. We have attempted to account for all names of species and infraspecific taxa that have ever been recorded for Singapore, along with the pertinent publications that reported each of these names. For each currently accepted name, the synonyms of relevance for Singapore are included. The native or non-native status for all taxa is given, along with the most recent national conservation assessment applied to each native taxon. If we were aware that the most recent assessment required an update, the taxon is newly assessed here. The checklist includes 2654 native taxa, 479 naturalised/casual taxa and 101 cryptogenic taxa.

DOI:

10.26492/gbs74(suppl.1).2022-01

View Publication

New Guinea has the world’s richest island flora

Nature
2020

Vol. 584, Issue 7822

pp. 579-583

New Guinea is the world’s largest tropical island and has fascinated naturalists for centuries. Home to some of the best-preserved ecosystems on the planet and to intact ecological gradients—from mangroves to tropical alpine grasslands—that are unmatched in the Asia-Pacific region, it is a globally recognized centre of biological and cultural diversity. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families—suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the ‘Last Unknown’.

DOI:

10.1038/s41586-020-2549-5

View Publication
Caroline M. Pannell | Flora of the World