Mark Darrach
Publications (Showing 3 of 3)
Integrative species delimitation methods infer species boundaries in the Lomatium foeniculaceum complex and indicate an evolutionary history from the Southwest towards the Northeast in western North America
Vol. 204
pp. 108276
DOI:
10.1016/j.ympev.2024.108276
Phylogenomic insights and recircumscription of the perennial endemic North American clade of Apiaceae (Apioideae, Selineae)
Vol. 74, Issue 6
pp. 1528-1542
With ca. 200 morphologically variable species placed in 20 putative genera within the tribe Selineae of subfamily Apioideae, the Perennial Endemic North American (PENA) clade of Apiaceae forms the second‐largest plant radiation entirely endemic to North America, yet, elucidating evolutionary relationships for this intractable plant lineage has been challenging. The objectives of this study are to elucidate the monophyly of the PENA clade and assess phylogenetic relationships to other clades in Selineae, contributing to a refined understanding of relationships. By analyzing a robust sample set, including ingroup and outgroup taxa, we employ high‐throughput sequencing technologies to capture a wide array of nuclear DNA sequences using the Angiosperms353 baits. Our bioinformatics pipeline, incorporating both HybPiper and HybPhaser workflows, facilitated the recovery and analysis of targeted sequences, ensuring high‐quality data for maximum likelihood and multispecies pseudo‐coalescent phylogenetic reconstructions. Our phylogenetic analyses do not recover a monophyletic PENA that includes all genera presumed to be part of this clade. Our results prompted the realignment of genera to include in the PENA clade. Genera that occur primarily in eastern North America are moved out of PENA. We also resolve, for the first time, the placement of the genus Eurytaenia within Apiaceae. This study contributes to a deeper understanding of the phylogenetic relationships within a taxonomically complex group of western North American Apiaceae, paving the way for broader insights into plant diversity and evolution in this botanically complex region.
DOI:
10.1002/tax.13386
Resolving taxonomic uncertainty and exploring evolutionary relationships in the Cymopterus terebinthinus (Apiaceae) species complex
Vol. 74, Issue 5
pp. 1191-1212
Speciation processes in plants can be difficult to evaluate, but are essential to understanding evolutionary processes that lead to diversification. Determining the juncture at which a genetically and/or morphologically divergent population can be reliably considered a separate species is often challenging. This is particularly so with respect to recent divergences amongst closely related taxa wherein factors such as incomplete lineage sorting may yield confounding results. Taxa in the Cymopterus terebinthinus (Apiaceae) species complex have long puzzled botanists. Named entities in this group display similar, yet apparently distinct morphologies that have been classified as varieties under various generic names highlighting long‐standing nomenclatural instability. Previous phylogenetic studies have challenged the monophyly of this complex. This study aims to clarify taxonomic boundaries and infer evolutionary relationships among the four C. terebinthinus varieties and C. petraeus by applying phylogenetic inference and incorporating ecological, morphological, and geographical evidence. We sampled from populations of all varieties of C. terebinthinus and C. petraeus for target capture with the Angiosperms353 bait kit. We performed phylogenetic analyses with maximum likelihood (RAxML and IQ‐TREE) and coalescent‐based phylogenetic analysis (ASTRAL). We also conducted principal component analysis of soil samples and climatic variables. We find that C. terebinthinus and its varietal infrataxa comprise a monophyletic clade that includes C. petraeus. Clade groupings correspond to previous taxonomic assignments and morphology. Clades are often closely associated with geographical variables and at times correlated with ecological variables. Exceptions to this are here attributed to various evolutionary factors that often confound other phylogenetic analyses such as incomplete lineage sorting, introgression, and paralogous loci. Our findings suggests that geographical factors might play a major role in genetic and morphological differentiation in this complex. Despite finding well‐supported clades that correspond to defined morphological characters; further sampling among C. petraeus populations is required to make taxonomic decisions.
DOI:
10.1002/tax.13344