Families Collected
10
Genera Collected
14
Species Collected
17
Occurrences Recorded
18
Countries
1
Photos Taken
0
Occurrences (18)
Occurrence Timeline
Publications (Showing 4 of 4)
Integrative species delimitation methods infer species boundaries in the Lomatium foeniculaceum complex and indicate an evolutionary history from the Southwest towards the Northeast in western North America
Vol. 204
pp. 108276
DOI:
10.1016/j.ympev.2024.108276
Resolving taxonomic uncertainty and exploring evolutionary relationships in the Cymopterus terebinthinus (Apiaceae) species complex
Vol. 74, Issue 5
pp. 1191-1212
Speciation processes in plants can be difficult to evaluate, but are essential to understanding evolutionary processes that lead to diversification. Determining the juncture at which a genetically and/or morphologically divergent population can be reliably considered a separate species is often challenging. This is particularly so with respect to recent divergences amongst closely related taxa wherein factors such as incomplete lineage sorting may yield confounding results. Taxa in the Cymopterus terebinthinus (Apiaceae) species complex have long puzzled botanists. Named entities in this group display similar, yet apparently distinct morphologies that have been classified as varieties under various generic names highlighting long‐standing nomenclatural instability. Previous phylogenetic studies have challenged the monophyly of this complex. This study aims to clarify taxonomic boundaries and infer evolutionary relationships among the four C. terebinthinus varieties and C. petraeus by applying phylogenetic inference and incorporating ecological, morphological, and geographical evidence. We sampled from populations of all varieties of C. terebinthinus and C. petraeus for target capture with the Angiosperms353 bait kit. We performed phylogenetic analyses with maximum likelihood (RAxML and IQ‐TREE) and coalescent‐based phylogenetic analysis (ASTRAL). We also conducted principal component analysis of soil samples and climatic variables. We find that C. terebinthinus and its varietal infrataxa comprise a monophyletic clade that includes C. petraeus. Clade groupings correspond to previous taxonomic assignments and morphology. Clades are often closely associated with geographical variables and at times correlated with ecological variables. Exceptions to this are here attributed to various evolutionary factors that often confound other phylogenetic analyses such as incomplete lineage sorting, introgression, and paralogous loci. Our findings suggests that geographical factors might play a major role in genetic and morphological differentiation in this complex. Despite finding well‐supported clades that correspond to defined morphological characters; further sampling among C. petraeus populations is required to make taxonomic decisions.
DOI:
10.1002/tax.13344
Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the Lomatium packardiae/L. anomalum clade of the L. triternatum (Apiaceae) complex
Vol. 108, Issue 7
pp. 1217-1233
Premise
Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger‐sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here.
Methods
The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent‐based species tree analysis that takes incomplete lineage sorting into account; ASTRAL‐III, another coalescent‐based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups.
Results
The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades.
Conclusions
The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent‐based processes.
DOI:
10.1002/ajb2.1676
Evolutionary origins of three rare alpine-endemic species of Lomatium (Apiaceae) in the Wallowa and Elkhorn mountains of Northeastern Oregon
Vol. 181, Issue 7
pp. 748-765
DOI:
10.1086/709373