John C. Manning

Publications (Showing 3 of 3)

Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae)

Annals of Botany
2013

Vol. 113, Issue 2

pp. 357-371

Background and Aims Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences. Methods Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia. Key Results Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types. Conclusions The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.

DOI:

10.1093/aob/mct248

View Publication

Contrasting biogeographic and diversification patterns in two Mediterranean-type ecosystems

PLoS ONE
2012

Vol. 7, Issue 6

pp. e39377

The five Mediterranean regions of the world comprise almost 50,000 plant species (ca 20% of the known vascular plants) despite accounting for less than 5% of the world’s land surface. The ecology and evolutionary history of two of these regions, the Cape Floristic Region and the Mediterranean Basin, have been extensively investigated, but there have been few studies aimed at understanding the historical relationships between them. Here, we examine the biogeographic and diversification processes that shaped the evolution of plant diversity in the Cape and the Mediterranean Basin using a large plastid data set for the geophyte family Hyacinthaceae (comprising ca. 25% of the total diversity of the group), a group found mainly throughout Africa and Eurasia. Hyacinthaceae is a predominant group in the Cape and the Mediterranean Basin both in terms of number of species and their morphological and ecological variability. Using state-of-the-art methods in biogeography and diversification, we found that the Old World members of the family originated in sub-Saharan Africa at the Paleocene–Eocene boundary and that the two Mediterranean regions both have high diversification rates, but contrasting biogeographic histories. While the Cape diversity has been greatly influenced by its relationship with sub-Saharan Africa throughout the history of the family, the Mediterranean Basin had no connection with the latter after the onset of the Mediterranean climate in the region and the aridification of the Sahara. The Mediterranean Basin subsequently contributed significantly to the diversity of neighbouring areas, especially Northern Europe and the Middle East, whereas the Cape can be seen as a biogeographical cul-de-sac, with only a few dispersals toward sub-Saharan Africa. The understanding of the evolutionary history of these two important repositories of biodiversity would benefit from the application of the framework developed here to other groups of plants present in the two regions.

DOI:

10.1371/journal.pone.0039377

View Publication

Spatio-temporal history of the disjunct family Tecophilaeaceae: a tale involving the colonization of three Mediterranean-type ecosystems

Annals of Botany
2012

Vol. 111, Issue 3

pp. 361-373

Background and Aims

Tecophilaeaceae (27 species distributed in eight genera) have a disjunct distribution in California, Chile and southern and tropical mainland Africa. Moreover, although the family mainly occurs in arid ecosystems, it has colonized three Mediterranean-type ecosystems. In this study, the spatio-temporal history of the family is examined using DNA sequence data from six plastid regions.

Methods

Modern methods in divergence time estimation (BEAST), diversification (LTT and GeoSSE) and biogeography (LAGRANGE) are applied to infer the evolutionary history of Tecophilaeaceae. To take into account dating and phylogenetic uncertainty, the biogeographical inferences were run over a set of dated Bayesian trees and the analyses were constrained according to palaeogeographical evidence.

Key Results

The analyses showed that the current distribution and diversification of the family were influenced primarily by the break up of Gondwana, separating the family into two main clades, and the establishment of a Mediterranean climate in Chile, coinciding with the radiation of Conanthera. Finally, unlike many other groups, no shifts in diversification rates were observed associated with the dispersals in the Cape region of South Africa.

Conclusions

Although modest in size, Tecophilaeaceae have a complex spatio-temporal history. The family is now most diverse in arid ecosystems in southern Africa, but is expected to have originated in sub-tropical Africa. It has subsequently colonized Mediterranean-type ecosystems in both the Northern and Southern Hemispheres, but well before the onset of the Mediterranean climate in these regions. Only one lineage, genus Conanthera, has apparently diversified to any extent under the impetus of a Mediterranean climate.

DOI:

10.1093/aob/mcs286

View Publication
John C. Manning | Flora of the World