Flora of the World Foundation

Boise, ID, USA

Families Collected

438

Genera Collected

3,315

Species Collected

3,863

Occurrences Recorded

10,141

Countries

51

Photos Taken

232,107

Occurrence Locations

Occurrences (10141)

Loading table...

Occurrence Timeline

Affiliated People (8)

Publications (Showing 5 of 133)

A single widespread species or multiple narrow endemics: a search for boundaries within the Piper amalago complex (Piperaceae)

Molecular Phylogenetics and Evolution
2026

Vol. 214

pp. 108457

The delimitation of species boundaries has been a constant challenge to the fields of systematics, natural history, and conservation biology. Subtle and minor morphological differences in a widespread species complex make delimiting species boundaries particularly difficult. High throughput targeted sequencing of hundreds of loci has allowed researchers to obtain improved insights into evolutionary processes and resolved previously ambiguous phylogenetic relationships. Piper amalago (subgenus Gonistum) is morphologically similar to, and geographically overlaps with, many other Neotropical Piper species that have narrow restricted distributions, or occur as narrow endemics. Taxonomists have debated whether morphological differences between P. amalago and other similar species merit distinct species status or if these taxa represent a single widespread species exhibiting extensive intraspecific variation. Recent molecular analyses demonstrated that P. amalago is paraphyletic with morphologically similar species, notably P. martensianum, but these findings lack phylogenetic support. This study investigates the phylogenetic relationships of P. amalago and several closely related species using multiple DNA sequences, and seeks to determine whether species can be delimited on the basis of phylogenetic, geographical, and morphological information. The Angiosperms353 bait set was used to retrieve nuclear genes to build maximum likelihood and multispecies coalescent phylogenetic hypotheses. Available DNA sequence data are consistent with the presence of a single, monophyletic, widespread species complex, with considerable morphological variation and some geographic structure. While the drivers of the morphological variation within this complex are not yet fully understood, we have a better understanding of evolutionary relationships and species boundaries within Piper, a giant genus.

DOI:

10.1016/j.ympev.2025.108457

View Publication

Pandanus plastomes decoded: When climate mirrors morphology and phylogenetic relationships

American Journal of Botany
2025

Vol. 112, Issue 2

Premise

Pandanus Parkinson (Pandanaceae) is a large genus of paleotropical tree‐like monocots. Previous studies using small DNA regions questioned the monophyly of the seven Pandanus subgenera, but low phylogenetic branch support hindered further investigations. We aimed to (1) test Pandanus subgeneric monophyly, (2) identify clade morphological synapomorphies, (3) investigate correlations between leaf anatomy of water storage tissue and climatic differentiation across clades, and (4) construct hypotheses on the genus' spatiotemporal history.

Methods

We sequenced 50 Pandanus species using genome skimming and reconstructed plastomes with MITObim. We inferred partitioned RAxML phylogenetic trees to test subgeneric monophyly using Shimodaira–Hasegawa tests. We inferred a partitioned dated BEAST phylogenetic tree used for ancestral state reconstructions of morphological traits. Phylogenetic clades were used to compare climatic (Bioclim) and soil (UNESCO Digital Soil Map) conditions using random forests. We correlated present morphology and climatic niche with past climate events.

Results

Our phylogenetic analyses revealed two clades and four subclades. Only subgenus Coronata was monophyletic. Staminate synapomorphies were identified for three subclades. Hypertrophied and hyperplasic water‐storage tissue was a synapomorphy for clade II, correlating with more seasonal temperature and precipitation regimes and more well‐draining soil. Clades differentiated during the advent of the Southeast Asian monsoon in the early Miocene, whereas subclades differentiated during the Miocene Thermal Maximum.

Conclusions

Pandanus subgeneric classification needs to be revised. Hypertrophied hyperplasic water‐storage tissue is a key trait in Pandanus evolution, possibly explaining climatic and biogeographic patterns because it is key to maintaining photosynthesis during periods of hydric stress.

DOI:

10.1002/ajb2.16461

View Publication

Resolving taxonomic uncertainty and exploring evolutionary relationships in the Cymopterus terebinthinus (Apiaceae) species complex

TAXON
2025

Vol. 74, Issue 5

pp. 1191-1212

Speciation processes in plants can be difficult to evaluate, but are essential to understanding evolutionary processes that lead to diversification. Determining the juncture at which a genetically and/or morphologically divergent population can be reliably considered a separate species is often challenging. This is particularly so with respect to recent divergences amongst closely related taxa wherein factors such as incomplete lineage sorting may yield confounding results. Taxa in the Cymopterus terebinthinus (Apiaceae) species complex have long puzzled botanists. Named entities in this group display similar, yet apparently distinct morphologies that have been classified as varieties under various generic names highlighting long‐standing nomenclatural instability. Previous phylogenetic studies have challenged the monophyly of this complex. This study aims to clarify taxonomic boundaries and infer evolutionary relationships among the four C. terebinthinus varieties and C. petraeus by applying phylogenetic inference and incorporating ecological, morphological, and geographical evidence. We sampled from populations of all varieties of C. terebinthinus and C. petraeus for target capture with the Angiosperms353 bait kit. We performed phylogenetic analyses with maximum likelihood (RAxML and IQ‐TREE) and coalescent‐based phylogenetic analysis (ASTRAL). We also conducted principal component analysis of soil samples and climatic variables. We find that C. terebinthinus and its varietal infrataxa comprise a monophyletic clade that includes C. petraeus. Clade groupings correspond to previous taxonomic assignments and morphology. Clades are often closely associated with geographical variables and at times correlated with ecological variables. Exceptions to this are here attributed to various evolutionary factors that often confound other phylogenetic analyses such as incomplete lineage sorting, introgression, and paralogous loci. Our findings suggests that geographical factors might play a major role in genetic and morphological differentiation in this complex. Despite finding well‐supported clades that correspond to defined morphological characters; further sampling among C. petraeus populations is required to make taxonomic decisions.

DOI:

10.1002/tax.13344

View Publication

Phylogenomic insights and recircumscription of the perennial endemic North American clade of Apiaceae (Apioideae, Selineae)

TAXON
2025

Vol. 74, Issue 6

pp. 1528-1542

With ca. 200 morphologically variable species placed in 20 putative genera within the tribe Selineae of subfamily Apioideae, the Perennial Endemic North American (PENA) clade of Apiaceae forms the second‐largest plant radiation entirely endemic to North America, yet, elucidating evolutionary relationships for this intractable plant lineage has been challenging. The objectives of this study are to elucidate the monophyly of the PENA clade and assess phylogenetic relationships to other clades in Selineae, contributing to a refined understanding of relationships. By analyzing a robust sample set, including ingroup and outgroup taxa, we employ high‐throughput sequencing technologies to capture a wide array of nuclear DNA sequences using the Angiosperms353 baits. Our bioinformatics pipeline, incorporating both HybPiper and HybPhaser workflows, facilitated the recovery and analysis of targeted sequences, ensuring high‐quality data for maximum likelihood and multispecies pseudo‐coalescent phylogenetic reconstructions. Our phylogenetic analyses do not recover a monophyletic PENA that includes all genera presumed to be part of this clade. Our results prompted the realignment of genera to include in the PENA clade. Genera that occur primarily in eastern North America are moved out of PENA. We also resolve, for the first time, the placement of the genus Eurytaenia within Apiaceae. This study contributes to a deeper understanding of the phylogenetic relationships within a taxonomically complex group of western North American Apiaceae, paving the way for broader insights into plant diversity and evolution in this botanically complex region.

DOI:

10.1002/tax.13386

View Publication