Families Collected
79
Genera Collected
149
Species Collected
144
Occurrences Recorded
180
Countries
4
Photos Taken
2
Occurrences (180)
Occurrence Timeline
Publications (Showing 5 of 11)
A single widespread species or multiple narrow endemics: a search for boundaries within the Piper amalago complex (Piperaceae)
Vol. 214
pp. 108457
DOI:
10.1016/j.ympev.2025.108457
Integrative species delimitation methods infer species boundaries in the Lomatium foeniculaceum complex and indicate an evolutionary history from the Southwest towards the Northeast in western North America
Vol. 204
pp. 108276
DOI:
10.1016/j.ympev.2024.108276
Resolving taxonomic uncertainty and exploring evolutionary relationships in the Cymopterus terebinthinus (Apiaceae) species complex
Vol. 74, Issue 5
pp. 1191-1212
Speciation processes in plants can be difficult to evaluate, but are essential to understanding evolutionary processes that lead to diversification. Determining the juncture at which a genetically and/or morphologically divergent population can be reliably considered a separate species is often challenging. This is particularly so with respect to recent divergences amongst closely related taxa wherein factors such as incomplete lineage sorting may yield confounding results. Taxa in the Cymopterus terebinthinus (Apiaceae) species complex have long puzzled botanists. Named entities in this group display similar, yet apparently distinct morphologies that have been classified as varieties under various generic names highlighting long‐standing nomenclatural instability. Previous phylogenetic studies have challenged the monophyly of this complex. This study aims to clarify taxonomic boundaries and infer evolutionary relationships among the four C. terebinthinus varieties and C. petraeus by applying phylogenetic inference and incorporating ecological, morphological, and geographical evidence. We sampled from populations of all varieties of C. terebinthinus and C. petraeus for target capture with the Angiosperms353 bait kit. We performed phylogenetic analyses with maximum likelihood (RAxML and IQ‐TREE) and coalescent‐based phylogenetic analysis (ASTRAL). We also conducted principal component analysis of soil samples and climatic variables. We find that C. terebinthinus and its varietal infrataxa comprise a monophyletic clade that includes C. petraeus. Clade groupings correspond to previous taxonomic assignments and morphology. Clades are often closely associated with geographical variables and at times correlated with ecological variables. Exceptions to this are here attributed to various evolutionary factors that often confound other phylogenetic analyses such as incomplete lineage sorting, introgression, and paralogous loci. Our findings suggests that geographical factors might play a major role in genetic and morphological differentiation in this complex. Despite finding well‐supported clades that correspond to defined morphological characters; further sampling among C. petraeus populations is required to make taxonomic decisions.
DOI:
10.1002/tax.13344
A piece of the Piper puzzle: Systematics of Piper section Enckea, a Neotropical section in a giant genus
Vol. 49, Issue 3
pp. 547-566
DOI:
10.1600/036364424x17267811220452
Phylogenomics and the rise of the angiosperms
Vol. 629, Issue 8013
pp. 843-850
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
DOI:
10.1038/s41586-024-07324-0